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Abstract

An asymptotic analysis of the near-tip field is presented in terms of the coordinate perturbation technique for fast
crack propagation in an elastic—plastic-viscoplastic material with damage. A damage variable is incorporated in the
constitutive relation based upon the strain-equivalence principle of damage mechanics. The damage evolution law used
is a quasi-brittle type, in which both equivalent and hydrostatic stresses are involved. A non-singular stress field is
obtained, as the damage has such a substantial influence on the material behaviour that the high stresses are relaxed at
the crack tip. An analytical expression is obtained which explicitly shows the variation of stresses approaching the crack
tip, and numerical computations of the angular distributions of stresses and strains are also presented. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

There have been many practical cases in which cracks propagate increasingly rapidly and eventually lead
to large-scale unstable growth in engineering structures. To preclude and/or control such catastrophic
occurrence, many investigations have been performed to understand the dynamic cracking process and to
develop methodologies of crack arrest. For example, Amazigo and Hutchinson (1977) first investigated
quasi-static crack growth in an elastic—plastic solid, while Hui and Riedel (1981) investigated quasi-static
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crack growth in an elastic-viscoplastic medium. Studies on transient fracture, without considering inertia
effects of materials, in elastic—plastic or elastic—viscoplastic media also include the works of Hawk and
Bassani (1986), Hui (1986) and others (Bose and Castaneda, 1992, etc.). On the other hand, Achenbach and
Kanninen (1978), Achenbach et al. (1981), Aboudi and Achenbach (1983), Freund and Douglus (1982), Lo
(1983), Gao and Nemat-Nasser (1983), Gao et al. (1983), Leighton et al. (1987), Ostlund and Gudmundson
(1988), and Ponte Castaneda (1987), analysed fast fracture in elastic—plastic or elastic—viscoplastic media in
which inertia effects were taken into account. However, in many of these studies the focus was placed on
specific materials that could be described by bilinear, elastic—perfectly-plastic, power-law hardening stress—
strain curves and J, rule. With these material laws, all the stress fields obtained are shown to have singular
characteristics. Clearly, the singular stress fields predicted are anomalous to practice in which stresses with
finite amplitude is expected, if other factors, such as yielding and blunting of the crack tip, are considered.
In particular, highly concentrated stresses will inevitably introduce damage in the material, which, in turn,
degrades the material and relaxes the stresses. Whether or not singular stresses can be developed at the
crack tip depends on the extent of damage. There are several papers that address the effect of damage on
stress fields of static cracks. For example, Liu et al. (1994), Li et al. (1988), Tvergaard (1986), and Bassani
and Hawk (1990) used fully numerical or combined analytical-numerical procedures to analyse the in-
fluence of damage on the crack-tip field, while others (e.g., Gao, 1986; Lu et al., 1997; Lee et al., 1997) gave
analytical estimates to the damage field around the crack tip. Since these analytical studies only addressed
stationary or quasi-static crack problems, the purpose of this paper is to evaluate the fast fracture problem
for a generalised damaged-elastic—plastic—viscoplastic material, highlighting the influence of damage on the
stress field very close to the crack tip.

We employ a continuum damage model developed by Lemaitre (1992), and incorporate the damage
effect in the constitutive equation in terms of the strain-equivalence theorem of damage mechanics
(Lemaitre, 1985, 1992). As will be shown, with this material model, a non-singular stress field is obtained.

A coordinate perturbation technique is applied to perform an asymptotic analysis to the fast fracture
problem under consideration. For a first order approximation this treatment gives exactly the same result as
an eigenexpansion method (for example, Williams, 1956). However it is distinctly different when higher
order terms are included (e.g., Lu and Lee, 1998). The coordinate perturbation technique could be more
convenient since the higher order expansions give linear rather than non-linear differential or integral—
differential equations. This method hence provides a complete representation of the asymptotic expansions,
provided that higher order solutions exist.

The arrangement of this paper is as follows. In Section 2 we list the basic equations, including the
equation of motion, the constitutive relation, and the damage evolution law. In particular, in this section we
derive the damage law in a form that applies to the crack-tip condition. Section 3 is devoted to the as-
ymptotic analysis of the near-tip field. Numerical computations for the angular variations of stresses and
velocities are carried out in Section 4, and Section 5 gives concluding remarks.

2. Governing equation
2.1. Equations of motion

The stress and deformation fields of the material containing a moving crack are referred to a coordinate
system whose origin, O, is located at the crack tip. The crack is in the (x, x;)-plane where the x3-axis co-
incides with the crack front and the x;-axis is in the direction of crack advance. The relevant displacement
components are u;(x,xs,¢) and u,(xy,x,,¢), where ¢ is time. In the moving coordinate system, a material
derivative with respect to time gives
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O={ 504 )= {o-a0a ) (1)
where a(¢) is the crack-tip speed. For convenience, hereafter we denote

at(')E('),t'

For plane stress problems, the non-vanishing stress components are oy, o2(= 63;) and oy. Thus, the
equation of motion is
60',»,«
P =3, (i,j=12), )
where p is the mass density of the material.
Unless otherwise specified the summation convention for repeated subscripts is used throughout the

paper.
2.2. Constitutive relations

For some ductile metals at elevated temperatures, when a suddenly applied load is sufficient to produce an
instantaneous plastic state in a zone, the total response of the media within this zone may include simul-
taneously elastic, plastic and viscoplastic effects. In this case, the constitutive relation of an elastic—plastic—
viscoplastic material without damage can be described by (Riedel, 1981; Kanninen and Popelar, 1985)

by = &+ & + &P, (3a)
in which

i = %&U %(3‘1&50’ (3b)

= 352, (39

&P =3B e 05y (i, k=1,2), (3d)

where &; is total strain rate, &, elastic strain rate, &), plastic strain rate and & viscoplastic strain rate. s;; is

deviatoric stress and & is equivalent stress defined by

_ 1/2 1/2

7= [3si8,] ? = (67, + 63, — 61162 + 307,] ', (4)
where E represents Young’s modulus, v is Poisson’s ratio, n viscoplasticity exponent, B a temperature-
dependent material coefficient, N hardening exponent, and B, a material coefficient related to the yield
stress that can be expressed by oca;*'/ N/E, a is a material constant and &, is the effective viscoplastic strain.
¢ is a material constant for primary viscoplastic creep (¢ > 0), secondary viscoplastic creep (¢ = 0), or
tertiary viscoplastic creep (¢ < 0).

Note that the rate of &,,, namely, évp, is defined as

- 5 vp avp] 12
By = {ggij aij} . (5a)

Then, we have
&p = Ba"e,! (5b)
by using Eqs. (3d), (4) and the definition of é,, given in Eq. (5a).
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Integration of Eq. (5b) with respect to ¢ gives

t 1/(1+q)
Ep = {(1 + q)B/ a”dr} , (6)

fo
with &, =0 at r = ¢,.
The constitutive relation, Eq. (3a), can thus be rewritten as
. 1+, 1—-2v . 3 ama - 3o ‘o —q/(1+4)
bj =g S + Tokkél—j + 5300(1/}\') 25,0 + EBO’ ]s,:,-{(l + q)B/tO G d‘C} . (7)
Using the strain-equivalence principle of damage mechanics (Lemaitre, 1985, 1992), the constitutive
relations corresponding to the damaged material can be derived in the same way as for the virgin material
described by Eq. (7) except that the usual stress is replaced by the effective stress. Hence,

. 1+v,° 1—-2v 3 _ i) M 3
&ij = E (Sij)eff + T3 (Ukk)cfféij + EBO(@Sf/N) (sii)eff(a)cff + EB(O-)effl (si.i)eff
' —q/(1+q)
o [@pe )
)

where
(- n o d
(err = 1-D and  ()er = &( et
in which D is an isotropic damage variable ranging from 0 for the undamaged state to 1 for complete failure
of the material element.

2.3. Evolution law of damage

Observations have revealed that a fast moving crack in solids could result in two types of damage, namely,
brittle and quasi-brittle damage. Brittle damage usually occurs in those materials such as high strength
quenched steels or ceramics and concrete, for which there is no measurable plastic strain up to failure at the
meso-scale. For ductile materials described by Eq. (7), plasticity effects can be relatively large or, more likely,
be apparently small at some macro- or even meso-scale when they are experiencing fast fracture. However,
even for small plasticity, damage develops at the micro-scale as a localised phenomenon and plastic strains
occur in these small damaged volumes in the vicinity of the crack tip. In this case quasi-damage mechanism
applies. There are different forms of damage evolution law (Chaboche, 1988a,b; Krajcinovic, 1996), and here
we employ the modified quasi-brittle damage model suggested by Lemaitre (1992). That is,

dD 1 [2 1 dp

20 4=(1-2m | &
dr 2ESD 3( +V)(7 +3( v)o-kk dt? (9)

where S), is a material constant which characterises the damage strength, and P = dP/dt is equivalent
plastic strain rate defined by

. 12
pP= Bgljgﬂ . (10)

From Egs. (3¢c) and (10) we obtain

_ (1/N)-1 d _
. g g
ron(i2) 4 (:2) "
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Substituting Eq. (11) into Eq. (9) we have

(1/N)—1
dD By [2 1 ) G d G
— = =(1 =(1-2 —_— — . 12
ATRET7 EACRIAARE Ui | s a\1-D (12)
Let
A=1-— 1 (13)
= N
Eq. (12) can be recast as
1 do B _ o, d
~or @ = gas, 20 @+ (1= 2)(ow)] (0 3, @ (14)
where w = 1 — D. Integration of Eq. (14) yields
. B 2(1+V) _ (1—2\)) 20, \1=2
=21 _ _ 0 2
o1 - 0) = goo | 20 07 4+ S w0, (15)

with @ =1 (or D = 0) for (6), = 0.
Since the material at the moving crack tip must correspond to the fully failed state, then in the immediate
vicinity of the crack tip,

l‘iII&D—> 1 Elirr(}w—>0. (16)
That is,
D =1 or equivalently, o =~ 0. (17)
Eq. (15) is reduced to
B() 1/@=4) 2(1 —+ V) 2 (1 — 2V) 2 1/@=4) (1=2)/(2—%)
= G g 1
o= () [N e+ 5w @ (18)

under condition (17).

3. Field equations for near-tip analysis

Let (r,0) (—n < 0 < =, with symmetry about 6 = 0) be the plane coordinates centred at the moving crack
tip. In the following, a coordinate perturbation technique is applied to obtain an asymptotic solution:

U™ 0,6 (19)

NgE

i‘k(ra Hat) =r

Il
=

m

and

(m)
(0, 0. (20)

NgE

O',‘j(l", 9, t) =7

Il
S

m

With Eq. (20) the deviatoric stress s;; and oy can be expressed by

{Si/(ﬁ 07 l), O'kk(l", 0, If)} =/ Z {Sz('j)'n)(e’ If)7 Z]E;:‘)(H, t)}rnz7 (21)

m=0
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where
S(0,0) = ZI7(0,6) — 12800, 1), (22)

Note that the parameter, s, as well as the unknown functions, U,fm)(& t) and ZE;”)(@, 1), are to be deter-
mined. The relations

0 0 sinf 0

a—x]:Axl 700595— %0 (23)
and

0 . 0 cosQ 0

a—xz:szfsmﬁa 30 (24)

will be used below.
Substitution of Egs. (19) and (20) into the equation of motion (2) gives

0 — af Um0 = 4, | Y 0,0 (,j=1,2). (25)
ofo-a0a} | DI

By using Egs. (23) and (24), Eq. (25) can be rewritten as

[pa() ©0,1) + LY 5 OI} e 1+Z[ U0, 1) — pa(e)L" U™ (0,1)

L5 g, I)},,mﬂ-l =0 (i,j=1,2), (26)

J

in which L™ (i = 1, 2) is the differential operators defined by

0 0
LY = pcosf —sinf— and LY = usin0+ cos—

27
o0 o0 (27)
for i = 1 and 2, respectively.
Note that
1 ( 0i; Qi
G == i, j=1,2). 2

Replacing ¢; in constitutive relation (7) with Eq. (28), and then substituting Eqs. (19) and (20) into both
sides of the resulting relation, we have

1—2v o(1—)—
3 e, t)éi"ﬂr(l "
_ |:% (0 t):| s(1—n)(a+1)— 1+ |:; (0 t:| 1 1) "y 2 :|:Ls+m 0 t)

s+m mt-s— 1+V s , - S
+LE+ (9 t)} + I+Z [W (0,1) — ()LE*“’ l(j)(g’t)}rmﬂl -1

_%[ﬂ g,0 + LYU° (9,;)},»*1 [()L[” " (1;5”/1,‘”(9,;)4r

BO[ W 0 t)

N W

+ f: ! 3E2V [n(m (0, 1) — a()Lm =0 ) g, t)} =ty f:

|
3

_ d(t)@,(;'a(@, t)} pts(=n)(iat+1)- Z% 9 t mts(1=n)ng =0, (i,j = 172)7 (29)
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where
2N +1
- N+1° (30)
A _ ! 2 (31)
Z_N )
n
an1+q. (32)

The expressions of Afj'-"), am™, em, ijm) and £™ in Eq. (29) are given in Appendix A. .
Egs. (26) and (29) provide the asymptotic equations needed to evaluate the unknowns, U,-('") and Z,(-j'-">,

(i,j=1,2;,m=1,2,3,...). For first order approximation we have

- [pa(t)q” 00,0 + L9590, 1)} P =0 (33a)
and
L0500 a4 19090 ol | aoret=0 11V 00 5 2 122 oy ps )| 0o
=3 (L0000 + L 000,07 = (s (AP (0,0 + 1000,
- [Bmeafreon s Saapiog)tom <o (33)

Clearly, from Eqgs. (33a) and (33b) it follows that elasticity, plasticity, and viscoplasticity may play
different roles when the crack tip is approached, depending on the value of s. Since the problem described
by Eqgs. (33a) and (33b) is so complex, it seems quite unlikely for us to provide a complete interpretation of
the crack-tip behaviour. (It turned out (see, Riedel, 1981) that even for a quasi-static crack in a creeping
body without damage, mechanisms involved are so complicated that only approximate estimations can be
conducted.) Nevertheless, following the method employed by Hui and Riedel (1981), the local analysis
performed below may provide some interesting results which enable us to identify which term(s) may
conditionally play a dominant role in the near-tip field.

Eq. (33a) simply indicates that the inertia term and the stress have the same order with respect to », and
the equation is valid for any value of s. Hence, we begin our analysis from Eq. (33b). First, let us examine
the terms of the (effective) elasticity and the (effective) plasticity in Eq. (33b). The former is of the order of

#=0=1 whilst the latter is of the order of 7*(!="2*1)~1 For the majority of metals (see, for example, Riedel,
1981) N = 0.2-0.3. Under this condition we have
2N + 1 N 1
1—n)=1- =— 0 and 1+ =—-1>1. 34
(=) N+1 AR S (34)

Therefore, when » — 0, which one is more important depends on the sign of s. If s> 0, then
Is(1—mn) =1 <|s(l =n)(1 +74,) = 1]. If s<0, then |s(1 —n)—1]>|s(1 —#n)(1+ i) — 1|. Obviously,
s > 0 corresponds to a non-singular stress field, and s < 0 to a singular field. From damage mechanics, the
terminal state of damage is rupture, and the moving crack tip corresponds to a fully failed material meso-
volume. Since a fully failed material element cannot sustain load, stresses at the crack tip should vanish. In
contrast to this, the strain (and strain rate) at the crack tip goes to infinity because rupture occurs there.
With these considerations, a positive s is expected in our case. Thus, the term related to the effective
elasticity in Eq. (33b) can always be ignored in comparison with the effective plasticity.

With regard to comparisons between the third and the fourth terms, that is, between the effective
plasticity and the effective viscoplasticity terms in Eq. (33b), there exist three possibilities as follows.
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Case 1: Suppose that the effective plasticity dominates the crack-tip field, and the influence of effective
viscoplasticity can be neglected. Equating the exponents of » of the relevant terms in Eq. (33b), we have

s=1=s(l=n)(h+1)—1, (35)
which yields
s=0.

Clearly, according to Egs. (19) and (20), the result, s = 0, would lead to multiple values of stresses and
velocities at the point of the crack tip. They are not acceptable mathematically and physically.

It should be pointed that a different but relevant limiting case is that the constitutive equation, Eq. (7),
can be reduced to the problem of a crack propagating in a power-law hardening material, provided that
both damage and the viscoplastic term are neglected. Gao and Nemat-Nasser (1983) and Gao et al. (1983)
suggested that an asymptotic solution with a logarithm type of singularity be available. However, the result
they obtained there is restricted to elastically incompressible solids. Besides, an additional condition that
2'(0) = 0, namely, X(0) is a constant, has to be applied. Without imposing any additional assumptions,
such a form of asymptotic solutions (19) and (20) does not exist mathematically for Case 1. Note that this
conclusion obtained here is based on such analysis in which the deformation theory is available and elastic
unloading effects are not considered. A further discussion relevant to this issue is carried out elsewhere (Lu
et al., 2001a), in which the elastic unloading and (possible) plastic re-unloading processes are taken into
account.

Case 2: Suppose that the effective plasticity plays an equivalent role as the effective viscoplasticity.
Again, repeating the same procedure as performed in Case 1, we obtain

s—1=s(1=m(a+1)=1=s1-nn, (36)

It is readily seen that the above equalities cannot be simultanecously satisfied with any value of s. We may
thus conclude that the assumption in this case is not valid and must be ruled out.

Cuase 3: Suppose the effective viscoplasticity plays a dominant role in the crack-tip field while other terms
can be neglected. Following the same procedure as in Case 1 and Case 2, we have

s—1 :S(l - ”I)nq,
ie.
1+N

s = [1 —ny(1 _”)]71 :m‘

(37)
It is readily verified that Eq. (37) is consistent with all governing equations.

For a number of metals, typically n = 4-6 and N = 0.2-0.3. Hence, the value of s, determined by Eq.
(37), is always positive, which, as addressed above, predicts a non-singular stress field as we expect. This is a
result by virtue of the concept of damage mechanics, and it cannot be obtained with conventional fracture
mechanics alone. We may understand the non-singular stress field from this point of view: According to
damage mechanics, the initiation and propagation of a crack can be modelled through the evolution of a
damaged zone surrounding the crack. When damage increases, the material degrades and stresses are re-
laxed. When damage reaches its critical value at a point, the corresponding material meso-volume element
is completely failed and fracture occurs there. The crack continues to advance with the adjacent meso-
volume element reaching its critical state of damage, and so forth. In this way, no stress singularity ever
exists; nor does the stress intensity factor. Most previous studies on this topic (for example, Chow and
Wang, 1988) used fully numerical approaches, such as the finite element method, to complete the modelling.
However, even finite element methods do not work so easily due to the localisation of damage at its critical
stage. The problem is no longer elliptic, and a localised bifurcation of the solution may occur. In particular,
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if classic finite elements are used, the geometry of a crack is necessarily presumed a priori, and convergence
regarding the mesh size is not assured in some cases. In contrast to a fully numerical treatment, the analysis
conducted above does not have such disadvantages. More importantly, it permits an analytical insight into
the issue concerned, and makes some essential characteristics of the problem readily understood.

4. Formulations for numerical computations

With Eq. (37), Egs. (33a) and (33b) provide five equations — two from Eq. (33a) and three from Eq. (33b)
— for computing the 0-distributions of stresses and velocities Ufo)((), 1), Uéo)((),t), z 52)(0,0, zi‘?(o, t), and
Zg(@, t). For convenience of computation, a new equivalent equation is formulated in terms of Eq. (33b)
which can be written as

Uf?)(e,t) = [s cos 6U{<0)(0, t) — %Qi?(@, t)} sin”' 0, (38)

UZ(?O)(H, t) = [— scos 0UL" (6, 1) + 3219 (0, t)} cos™" 0, (39)

5COS 0(/2(?6)(9, t) + ssin HUI(%)(Q, t) — sin 0U2<0)(0, t) + cos HUI(())(Q, 1) = 3399(97 ), (40)
where

(=)o =ng()

Substituting Eqs. (38) and (39) into Eq. (40) and then differentiating the new equation with respect to 0
on both sides, we obtain
scos 0U)(0,1) + ssin 0U3) (0, 1) — cos? 0Q\7,(0, 1) — sin” 0Q%),(0, 1) — sin 20917 (0, )
= ssin 0U" (0, 1) — s cos 0U" (0, 1) — sin 20Q9 (0, 1) + sin 2095 (0, 1) + 2 cos 2029 (0, 1). (41)

Eq. (41) is not an independent but an equivalent equation which is used to replace Eq. (40) for ease of
computation. Thus, with Egs. (33a), (38), (39) and (41), five independent differential equations have been
established for five unknowns.

For second order approximations, a set of asymptotic equations can be derived as,

pa(t)LY U (0, 1) + LY Z1(0,0) = pU) (0,0)  (j=1,2), (42)
pa(t)LY ULV (0,1) + LY 25)(0,0) = pU (0,0) (= 1,2), (43)
Ul (0,1 = [(1 +5)cos 0U" (0, 1) — 3B (0, t)} sin”' 0, (44)
0i)(0,1) = [—(1 + ) sin 004"(0, 1) + nggy(e,t)} cos™ 0, (45)

(1+5) cos 0UL (0,1) + (1 +5) sin 0UL}) (0, 1) — cos® 01, (0, 1) — sin” 0Q5,(0, 7) — sin 20Q15,(0, 7)
= (1+5)sin0UY(0,1) — (1 +5) cos 0UL (0, 1) — sin 2029 (0, 1) + sin 202 (0, ) + 2 cos 2027 (0, 1).

1 2 11 22 12
(46)

Higher order asymptotic equations can be obtained with the same procedure.
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Egs. (33a), (38), (39) and (41) are a set of non-linear partial differential equations with respect to ¢ and 0.
It is impossible to obtain a general closed-form solution for them. Let

0 (0.0) = 4V 0(0), (k=1.2) o
and

20,0 =GO E) ), (.j=12) (48)
be the specific form of solution. Certainly, Eqgs. (47) and (48) are restrictive and depend on particular
loading cases (e.g., proportional loading) and specific crack movements. Nevertheless, with such solutions,
we may obtain some essential understanding of the angular variations of stresses and velocities in the crack-
tip field.

Substituting Eqgs. (47) and (48) into Egs. (33a), (38), (39) and (41), we have

pd(t)A(O)(l) = ki())G(O)(f) "
and
3B/ B —nN/(N+1)(1+4) —nN/(N+1)
A(Q)( ) B kéo) 7 (6E;D> [G(O)(t)} (j)q(t), (50&)
in which

—q/(1+9)
N W*”df} , (50b)

6,0 = {1+ 08 / ' [69()]

where kio) and ké()) are two constants that cannot be determined by the asymptotic analysis. From Egs. (49)
and (50a), the expressions 4 (¢) and G (¢) can be explicitly obtained as:

(N+1)/(nN+N+1)

3 k;O) . 6ES,, \ "M/ (N +N+1)
5 WBPa(f) 5 =0
G<0)(t) _ ) 0 (Sla)
0, - Co(l —ny) 1/(1=ny)
(G(19)] +T(t_ 1) 7 440
and
0 k§°) 0
A )(1) = a0 G\ )(t), )
where
) l+gnN+N+1
AN = — . 9 N n 1 ) (Sza)
v —(1+q)/q
3 KO\ / 6ES, \ ™imm
= | ZBpa(t)| 2 | 3 .
Cs 2 Pa()<k§0)>( B, ) (1+q)B, (52b)
1 1
v N+1[( —;q)(”N+N+1)(N+1)—nN+N+1} (520)
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Obviously, in the case of steady crack propagation (¢ = constant) in secondary creeping solid (¢ = 0), both
A and G do not depend upon time, and are only functions of the velocity of crack, k{o) and kg()), as well
as the relevant material constants.

With Egs. (51a) and (51b), the partial differential equations (33a), (38), (39) and (41) are correspondingly
reduced to a set of ordinary differential equations with respect to 6. That is,

KOLOTY(0) + 1950 0) =0 (j=1,2), (53)
KOLOTY(0) +19E00) =0 (i=1,2), (54)
7% ) = (kg‘”)” [scos 00" (6) 25 (0)] sin”" 0, (55)
0,"(0) = (K7) [~ ssin 00"(0) + 329 (0)] cos™ 0, (56)

~ 1 . =~/ -1 ~/ . ~ /) . ~/
scos 0U1<0)(0) + sin 9U2(0>(0) - (kg”) [cos2 02 (0) + sin® 0QLY(0) + sin 2991(3)(0)}
3 : -1 ~ ~ ~
= ssin 00" (0) — scos 00" (0) — (kg‘”) [ sin 2009 (0) — sin 20QY (0) — 2c0s 2009 (9)] . (57)

Here, Q\)(0) (i,j = 1,2) is identical to @’(0) but with U”(0,7) and X’(0,7) replaced by U,”(0) and

2.7 (0), respectively. In Egs. (53)—(57), the partial derivative 0/00 becomes the ordinary derivative, namely,
, d

() =55(): (58)

Eqgs. (53)—(57) determine the first order f-variation of velocities and stresses. Higher order asymptotic
angular solutions can be obtained as follows. If we let

0 (0.1) = 4V (1) U, (0), (59)
20,0 =GV ZP0), (. k=12), (60)
and substitute Egs. (59) and (60) in Eqgs. (42)-(46), we obtain
(1) = kKMpA© (1), when A (t) is not identical to zero (61)
G (1), when A4)(¢) is identical to zero
and
A0 () KM Gp(;;g), when A (7) is not identical to zero )
t) = .
KM Gp(;lg;), when 4 (¢) is identical to zero,
where kil) and kgl) are two constants to be determined, and
. d
A1) = &A(O)(I). (63)

Consequently, the second order asymptotic approximation, Egs. (42)-(46), becomes a set of ordinary
differential equations with respect to 0. In this paper, however, only the first order solutions will be illus-
trated in Section 5. Note that we have tacitly assumed that 4(¢) has a continuous first derivative in the
derivation of Egs. (61)—(63).
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From the results described by Egs. (51a), (51b), (61) and (62), it can be seen that the first and second
order of time-dependent amplitude factors, namely, 4 (¢), AV (¢), G?(¢) and GV (¢), can be explicitly
determined except the constants kim, k;o), kgl) and kgl). In fact, if other higher order asymptotic solutions can
be split into forms of expressions given by Egs. (47) and (48), it can be readily verified that the higher order
time-dependent amplitude factors, 4™ (¢) and G"™ () (m = 2,3,...), can also be determined following the
same procedure. The only problem is that it needs further studies to ascertain if such solutions satisfy the
physical and mathematical requirements.

The corresponding boundary conditions are subject to the symmetric constraints at 6 = 0,

U>(0,/) =0 and X5(0,¢) =0, (64)
and the traction free requirement at 0 = ,

Zn(n,t) =0 and ZX(=m,t) =0. (65)
Expanding Eqgs. (64) and (65) in the asymptotic forms, we have

Uy (0) = £19(0) =0, (66)

55 (m) = £ (m) = 0. (67)
Since for Eq. (37) there exists a “‘singularity’ at 0 = 0, the physical regularity constraint at 6 = 0 requires
s0,(0) - 27(0) =, (68)

Eq. (68) gives the fifth boundary condition.
Egs. (33a), (37), (38), and (40) and the boundary conditions Egs. (66)—(68) define a non-linear two-point
boundary-value problem, which can be solved by either the shooting method or the relaxation approach.
The relaxation method was applied in this study, since the shooting method may not work even if the initial

estimations are quite close to the true solutions.
In integrating Egs. (33a), (38), (39) and (41) it is convenient to rewrite them in the form

Y'(0) = G[Y(0), 0], (69)
where
! ] < d < T
S ARUARAR R (1)
and
G: [g17g27g37g47g5]T' (71)

The expressions of g1, g, g3, &4, and gs are given in Appendix B. There, k§°> =1 and kéo) =1

5. Discussion and some numerical results

It can be seen from Eq. (37) that the value of s, which governs the way of the stress approaching the
crack tip, is independent of the boundary conditions. As shown, s is totally determined by » and N, and it is
a monotonic function decreasing with increasing n and N values. In particular, s is always within the range
0.2-0.6 for the majority of engineering materials which have n = 4-6 and N = 0.2-0.3. Poisson’s ratio, v,
may alter the angular variations of stress and velocity fields through Egs. (38), (39) and (41). Other pa-
rameters will influence the amplitude of the stress and velocity distributions via the time-dependent am-
plitude factors, 4 (¢) and G (¢).
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The constants k(0> k<0) kil) and kgl), etc., cannot be determined by the asymptotic analysis and depend on
the global solution. Note that these constants appear not only in the time-dependent amplitude factors but
also in the differential equations for angular variations. Some previous studies (for example, Hui and
Riedel, 1981) did not introduce the arbitrary constants or took them as unity in their analyses.

From Eqgs. (49) and (50) it can be seen that k and k<0) characterise the ratio of the inertia field and the
stress field. For example, if ¢ — 0, then k — 0 and the inertia effect can be neglected.

The influence of the material constants, #, N, and v, on the angular variation of stress and velocity fields
is implicit. Some typical computed results are illustrated with k(0> and k<0) taken as unity.

Fig. 1 gives the non-dimensional angular varlatlon of stresses Wrth ng=3.5, N=0.25, and v=0.3.
Clearly, it can be seen that values of the stress X\ I (0), 252 (6) and = ( ) (angular equivalent stress) are
maximal at § =0 and then decrease with increasing 6, and reach thelr minima at 6 = n. The angular
variation of the shear stress, 2\ (0), is not monotonic. At § = 0, £\7(6) vanishes and gradually increases
with increasing 6. But at a certain point, which depends on materials constants and loadrng cases, 212 (6)
begins to decrease with increasing 6 and vanishes again at another point. Afterwards, z0 1 (9) repeats in a
similar way but with an opposite sign, and finally vanishes again at 6 = =.

Fig. 2 shows the angular distribution of strains corresponding to Fig. 1. Note that the angular variations
of strains can be obtained through time integration of the strain rate and the angular variation is identi-
fied. We can see from Fig. 2 that, in contrast to variations of stresses, the strains, Eﬁ?)(O), 5;?(0), and &9 (0)
are minimum at § = 0 and then increase with increasing 0, and finally reach their maxima at 0 = =.

Fig 3 gives the angular variations of U(O)(H) for n, = 3.5, 6.0 while N = 0. 25 v = 0.3 and n, = 3.5 but

= 0.4 with v = 0.3, and Fi 1g 4 shows the corresponding angular variations of U (0). Both Figs. 3 and 4

show that the velocities, U (9) and U (0), are monotonic increasing function with respect to 6, but the
former is in the negative drrectron and the latter is in the positive direction.

Fig. 5 illustrates the angular variations of »©(0) for n, = 3.5, 6.0 while N = 0.25, v =0.3 and n, = 3, 5
but N = 0.4 with v = 0.3, respectively. Since @ = 1 — D, we may consider w as a measure of the undamaged
material. Obviously, »®(0) is maximum at 0 =0 and is minimum at 0 = n, hence the corresponding
damage is minimum at § = 0 and maximum at 6 = =.

The present theory provides a theoretical basis for fully numerical computations to the problem of fast
fracture in a damaged-elastic—plastic-viscoplastic solid. The theory is not immediately applicable to give
quantitative details for general fast crack propagation because the analysis is focused on specific materials.
However, the concept of a severe damage zone very near to the crack tip is of practical importance in fast

12

N <f<;;)(e) |

Angular variations of stresses

T

Fig. 1. Angular variation of stresses when n, = 3.5, N = 0.25, and v = 0.3.
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4

Z9(0)

&)

Angular variations of strains

i £(0) £,(6)
0 /2 T

0

Fig. 2. Angular variation of strains when n, = 3.5, N = 0.25, and v = 0.3.

Angular variation of velocity

0 /2 T
0

Fig. 3. Angular variation of z}i‘”(e); curve-1 — n, = 3.5, N =0.25, v=0.3; curve-2 — n, = 6, N = 0.25, v=0.3; curve-3 — n, = 3.5,
N=04,v=0.3.

Angular variation of velocity

0 /2 "
0

Fig. 4. Angular variation of U\ (0); curve-1 — n, = 3.5, N = 0.25, v = 0.3; curve-2 — n, = 6, N = 0.25, v = 0.3; curve-3 —n, = 3.5,
N=04,v=03
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Fig. 5. Angular variation of w©®(0); curve-1 — n, = 3.5, N = 0.25, v = 0.3; curve-2 — n, = 6, N = 0.25, v = 0.3; curve-3 — n, = 3.5,
N=04,v=0.3.

crack propagation testing. It should also be noted that k§0> and kéo) remain undetermined if we try to
correlate branching and instability between the angular distributions of stress and velocity fields with a
rupture criterion. How to determine ki()) and ké()) effectively and conveniently merits further studies.

6. Concluding remarks

An asymptotic solution has been obtained for the crack-tip stress field associated with fast fracture in an
elastic—plastic—viscoplastic solid with quasi-brittle damage. The solution shows that stresses are not singular
at the crack tip due to the damage effect. Hence, there exists a small zone around the crack tip where the
prediction of singular stress field is no longer valid, since the damage effect dominates the tip behaviour
there. In this case the damage is extremely severe and the damage variable D is close to unity. Another
limiting case is that the damage can be relatively small and the damage variable, D, is much smaller than
unity. For that case a parametric perturbation method is applied to analyse the tip behaviour that is de-
scribed in Part 2 of this study (Lu et al., 2001b).

Note that in the zone where damage has a substantial influence on the crack-tip behaviour and the stress
field is dominated by the effective viscoplasticity, the evolution of the quasi-damage itself is primarily
controlled by plasticity effects as shown in Eq. (9), whilst the stress and strain rate fields are dominated by
the effective viscoplasticity. In addition, when the inertia effect is included, the effective plasticity effect
cannot be assumed to dominate the stress field of the fast moving crack tip alone. Otherwise, the asymptotic
analysis would lead to either a trivial solution or mathematical inconsistence.

It should be pointed out that all the results obtained are based on the infinitesimal strain description.
This starting point can be further improved since in the region very close to the crack tip, where damage is
extremely severe, the small deformation description is not exactly accurate. Nevertheless, the present study
provides a new asymptotic and analytical representation of the crack-tip behaviour, and establishes a
means to understand the problem in a different way. Another point is that in the present analysis a total
deformation theory has been used in which the unloading process is not involved. Thus, the zone concerned
here is apparently limited to a sufficiently small scale where the full yielding condition is approximately
satisfied and the total deformation description is acceptable. In another work (Lu et al., 2001a), we found
that for fast fracture in the material described by Eqs. (3a)-(3d), where viscoplasticity is important, the
elastic unloading domain is restricted to a very small sector (<1°) around the crack tip, provided that the
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crack velocity does not approach a limiting speed cr, where cg is the Rayleigh speed. Since the strain-
equivalence principle of damage mechanics leads to the self-similarity of plasticity between the damaged
medium and its virgin material, the result supports that the deformation description is applicable to our
case. Note that with the development of damage in the material, the yielding threshold also decreases with
softening of the material.
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Appendix A
From
i (r,0,0) = 7 i U™ (0,6 (A1)
m=0
and
oy(r,0,0) =1 f: (0,0 (A2)
m=0
Let
i (r, 0, 1) = f: Um0, 0" (A.3)
m=0
and
Gy(r,0,1) = i =00, 1) (A4)
m=0
Then,
AP0 = [l] 7 (A2)
r=0
" 0,t) = ”% % [‘Zk , (A.6)
4 1r=0
Lqum-2
e = M <5> , (A7)
r=0
l{l(’">(07 1) = rrlz! 66::" [Z] , (A.8)
r=0
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N n—1
1 o o Sii
(m) i
Q7 (0,1) = Pl [<®> d)/] ) (A.9)
r=0

S [rie.0 v .0), (A10)

q=0

Z(0,1)

I
B

00,0 =Y [0, 0L" T w0 (0,1)]. (A1)

Il
=

q

Here, the quantities with a hat ‘A > have the same expressions as their original ones without the hat, except
that the factor #* has been removed.

Appendix B

Eqgs. (32), (38), (39) and (41) can be rewritten in the matrix form

M(Y,0)Y — F(Y,0) =0, (B.1)
where Y’ is defined by Eq. (70) in the text, and

F= [flafé»f3af;17f5]T (B2)
in which

fi =5c0s00" (0) +scos 059 (0) + ssin 059(0), (B.3)

f= ~(0) 5(0) 50

»=scosO0U, (0)+scosX),)(0) + ssinb2,(0), (B.4)

£ =s5c0s00" (0) — 20 (0), (B.5)

fi=000) - ssin0 U (0), (B.6)

f5s=ssin00\"(0) — scos 00U (0) — sin 2029 (0) + sin 20 QY (0) + 2cos 20QY (0), (B.7)

while M is a matrix defined by

sin 0 0 0 sinf —cos0

0 sinf 0 —cosO sin0
M= | sinf 0 0 0 0 . (B.8)
0 cosf 0 0 0
scosO ssin0 mn 1y n3

Here, ny, n, and n, are represented by

n; = — cos’ QCﬂ) — sin® QCSQ) —sin 20 Cflz), (B.9)
ny = —cos> 0C\Y —sin* 0CY) — sin20C\2, (B.10)

n = —cos>0C\) —sin*0CY) — sin20C), (B.11)
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where
(1) (1) (1)
1 B 2 B 3 3B 1 (0
Cil) 22(0 ) 812 +B 11)7 C§1> 7500) S50 821 +B 11 ’ Cil) - T(IJ)ZQ’ (B.12)
(1) (1) (1)
B B 3B, -
1 2 2 3 3 0
ng) = 222_(20) g +Bgz)v Céz) = 222_(20) 821 +Béz)v Céz) == 2((235 (12)a (B.13)
B0 B0 3l
(1) _ P12 2 2 _ P2 3) () _ p@ _ P12
Ciy = 750 gntBy, Ch = 250 gu+ By, €y =By 50) Z12 (B.14)
while
1 1 3) (0 0 3
Bgl) :A<11) —A(]1>a)(3 >> B %(21411 - 11)604(1 ))7 B(11> = _‘(All +A11 ‘U4 )» (B.15)
2 1 3) (0 2 2 3) (0 3 2 3) (0
Bgz) = Agz) _A(22>wg )7 B(22> = _%<A(22) +A(22)w4(1 ))7 Bgz) = %(Agz) - Agz)wi )>7 (B.16)
1 1 3 2 3) (0 4 2
Bgz) :A<12) —A(12>a), Biz) = _%A(u)wz(t )v B<12 = 1Azz v B(12) = %Agz) (B.17)
in which
AY =18y, A8 =HSY, 4 = HSY, (B.18)
AY =mSY, AY =mSY), A7) =mSY), (B.19)
AY = 189 4Q) = 1S 4 = 1,8, (B.20)

In the above formulations,
20) 0
812 = 22(11) - Zg;,

&1 = 22&2) - 55(?,
5-(0) 5(0) | 5(0)
2y :%[211 +222],

¢0) _ 5(0) 5(0)
Sij =2y - %Zkk dij,

50 = [2059) 50 (1229 500 ”(27”[2@)](1 B/

37 -2 7 ’
~ 1 . WD) L o s
0" =3 [ E) + (1= 2) (3] FO0E,
~0 1—

(0) (0)](1+21)/(2—A)
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@y =2(1+v)a Va0 + &|”

b

@y =2(1+v)aVa Ly,

Hy = =, (80" (@) .
Recast Eq. (B.1) to
Y =M (Y,0)F(Y,0), (B.21)

where M~! is the inverse of M.
Let G = M~'F where [g1, 25, 23,84, 25| . We obtain

g = fisin' 0, (B.22)
g = facos™' 0, (B.23)

g = [scos3 Osin~' 0f; + (—cos Ofs — fony — fins + f3n,)cos 0
+ (=fimy + fym + fany + scos 0.f4) sin 0] (4) ", (B.24)

g4 = [(SSil’lB — }’l3) Sin2000871 Qﬁ + (f]nl —f3n1 —f;ﬂ’ll +f2n3 —f5 sin 9)
+ (fany + ssin 0 f sin ) cos 0](4) ', (B.25)

gs = [scos O(fin — fin, +scos0frny + sin 0 f5) cos 0 + (ssin 07y — fony) sin 0

+ fany sin® O cos™ 0] (4) ", (B.26)
where
A = —nysin® 0 — cos 0(cos On; + sin On3). (B.27)
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